
KINETICS OF AQUEOUS CORROSION

Anodic and cathodic reactions are coupled at a corroding metal surface:

Schematics of two distinct corrosion processes.

- (a) The corrosion process $M + O \longrightarrow M^{n+} + R$ showing the separation of anodic and cathodic sites.
- (b) The corrosion process involving two cathodic reactions.

The "corrosion current" . . . i_{corr} . . . related to amount of metal corroded by Faraday's Law . . .

 $i_{corr} t = \frac{nFw}{M}$

- n = number electrons involved in metal dissolution (\rightarrow valency);
- F = Faraday constant (96,500 coulomb/mol);
- w = mass corroded metal;
- **M** = molecular weight of metal.

<u>Note</u>: there may be more than one cathodic reaction (i.e., more than one " i_c ") and more than one anodic reaction (i.e., more than one " i_a " . . . e.g., for alloy);

 $i_{corr} = \sum i_a = -\sum i_c$

<u>Also</u>: because areas of anodic regions, A_a , are generally different from areas of cathodic regions, A_c , CURRENT DENSITIES are generally not equal . . . thus . . .

while
$$i_a = -i_c$$

 $A_a \neq A_c$
so $I_a = \underline{i_a} \neq \underline{i_c} = I_c \dots$
 $A_a = A_c$

(remember examples of rapid perforation arising from large cathode vs small anode combinations).

Corrosion consists of charge transfer reactions . . . e.g., . . .

anodic	$M_{lattice} \rightarrow M^{+}_{surface} + e \rightarrow M^{n+}_{surface} + (n-1)$)e
<u>cathodic</u>	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
and mass transpo	te.g.,	
<u>anodic</u>	$M^{n+}_{surface} \rightarrow M^{n+}_{solution}$	
<u>cathodic</u>	$O_{2 \text{ solution}} \rightarrow O_{2 \text{ surface}}$	
	$H_2O_{surface} \rightarrow H_2O_{bulk solution}$	

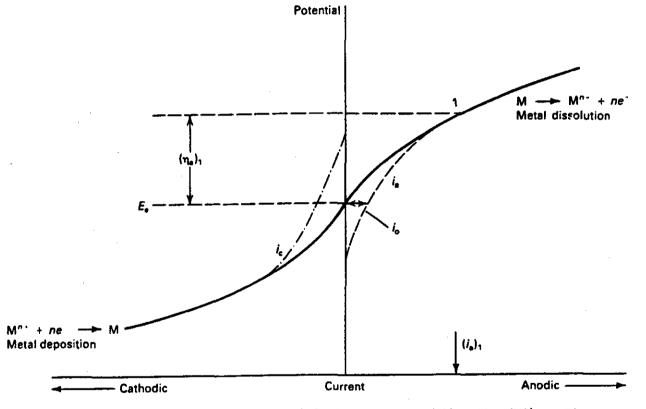
<u>At equilibrium</u>, $\eta = 0$, $E = E_e$, i = 0 <u>but</u> $i_a = -i_c = i_o$ (i.e., the forward and backward reactions are equal and the rate corresponds to the <u>exchange</u> <u>current</u>, i_o).

The expression relating the OVERPOTENTIAL, η , to the <u>net</u> current, i, is the Butler-Volmer equation:

 $\begin{array}{ll} \mathsf{i} = \mathsf{i}_o \{ \exp(\beta.\underline{\mathsf{nF}}.\eta) - \exp(- [1 - \beta].\underline{\mathsf{nF}}.\eta) \} \\ & \mathsf{RT} & \mathsf{RT} \\ & \mathsf{RT} & \mathsf{RT} \\ \end{array}$ where $\mathsf{R} = \mathsf{gas} \ \mathsf{constant}; \\ \mathsf{T} = \mathsf{absolute} \ \mathsf{temperature}; \\ & \mathsf{n} = \mathsf{number} \ \mathsf{of} \ \mathsf{charges} \ \mathsf{transferred} \ (\mathsf{valency}); \\ & \mathsf{F} = \mathsf{Faraday} \ \mathsf{constant} \ (\mathsf{96},\mathsf{500} \ \mathsf{coulomb/mol}); \\ & \beta = \texttt{``symmetry} \ \mathsf{coefficient''} \ (\to \mathsf{0.5}). \end{array}$

The first term in { } in B-V describes the forward (metal dissolution, anodic) reaction; the second term in { } describes the backward (metal deposition, cathodic) reaction.

ACTIVATION CONTROL is when the corrosion is controlled by charge transfer reactions . . .


EITHER the anodic charge transfer OR the cathodic charge transfer can control.

The anodic reactions and the cathodic reactions in a system can be studied INDIVIDUALLY by electrochemical methods . . . e.g., the changes in potential of an electrode caused by changes in the current flowing through it (or vice versa) can be measured . . . i.e., we can measure the POLARIZATION.

Consider metal dissolution and metal deposition . . .

If we "drive" the reaction (with our electrochemical apparatus) in the anodic direction, we can measure the "overpotential" η (the difference between the applied potential, E, required to give a net dissolution of metal and the equilibrium potential, E_e) and the <u>net</u> current, i.

A plot of the B-V equation for the metal dissolution/deposition reaction gives the polarization curve:

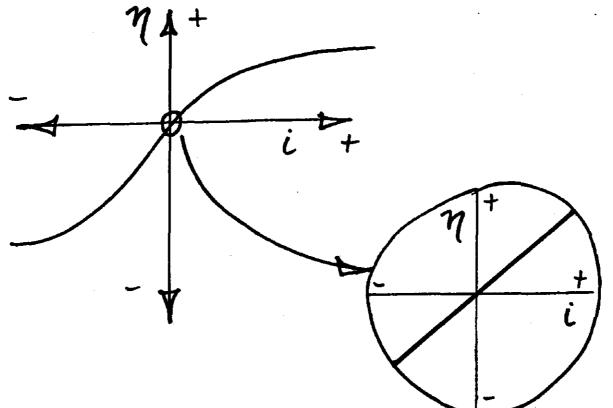
Current-potential relationship for a metal dissolution (M \rightarrow Mⁿ⁺)/deposition (Mⁿ⁺ \rightarrow M) process

If the symmetry coefficient β = 0.5, the curve is symmetrical about (i=0, E_e) and the B-V equation has a sinh form.

Corrosion for Engineers	Chapter 13: CORROSION CURRENT
Dr. Derek H. Lister	page 13 - 7

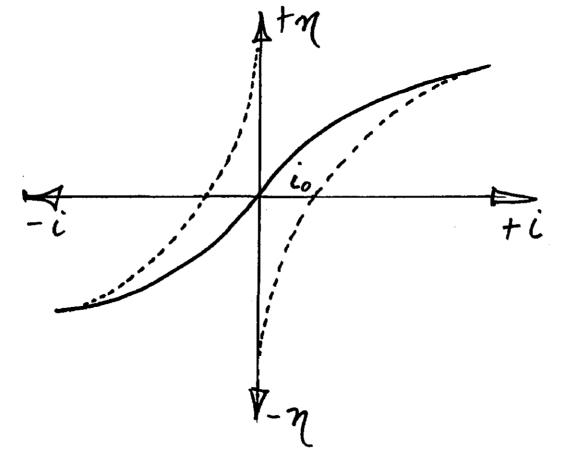
<u>Note</u>: At large enough overpotentials, the reaction is essentially all in one direction . . . one of the terms in the B-V-E is negligible and can be dropped.

Thus, for metal dissolution:


$$i_{a} = i_{o} \exp(\beta . \underline{nF}. \eta_{a})$$
RT
or
$$\eta_{a} = b_{a} \log \underline{i}$$
(high overpotential or "high-field"
$$i_{o}$$
approximation)
where
$$b_{v} = 2.303 \text{RT}$$
"Tafel coefficient"

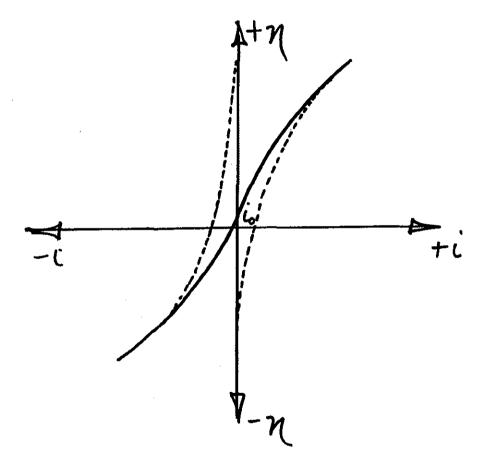
$$b_a = 2.303RT$$
 ... "Tafel coefficient".
 βnF

The Tafel coefficient for metal <u>deposition</u>:


$$b_c = -2.303RT$$

(1 - β)nF

<u>Note Also</u>: In the narrow region of small overpotentials, the relation becomes linear . . .


In the linear region . . .

If a reaction has a large exchange current, i_o , the curve is shallow and a large current is obtained for a small overpotential . . .

the reaction is not easily polarized (approaching "non-polarizable").

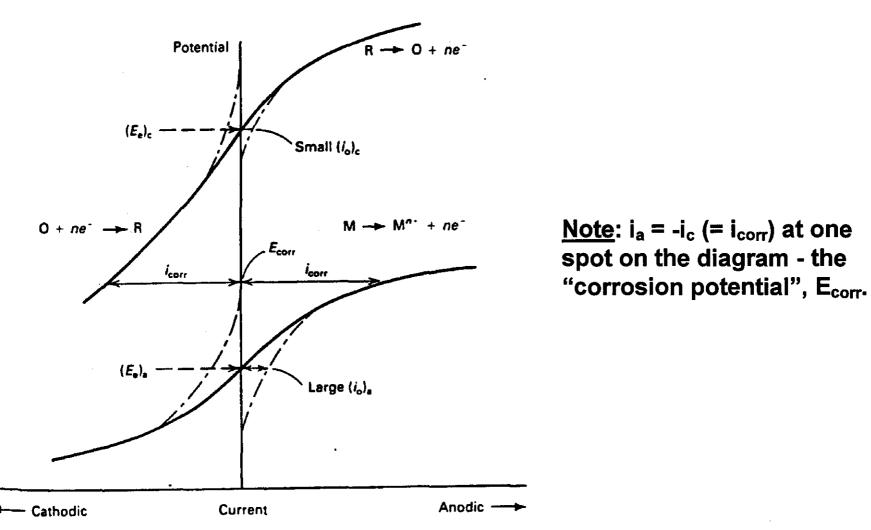
If a reaction has a small exchange current, i_o , the curve is steep and a large overpotential is needed for a small current . . .

the reaction is readily polarized.

Consider now a reaction that is cathodic to the metal dissolution . . .

viz.... $O + ne \iff R$

If this is coupled to metal dissolution in the corrosion process, then the reaction must move away from equilibrium so that a net <u>cathodic</u> current, $-i_c$, flows . . . similarly, the metal dissolution . . .


 $M \longrightarrow M^{n+} + ne$

must move away from equilibrium so that a net anodic current, -i_a, flows.

We know that \ldots $i_a = -i_c$ (= i_{corr}).

We plot the cathodic reaction on the same diagram as the anodic reaction . . . à La Butler-Volmer . . .

Chapter 13: CORROSION CURRENT page 13 - 12

Current-potential relationship for a metal dissolution/deposition and an accompanying redox showing how the two reactions couple together at the corrosion potential, E_{corr} .

E_{corr} is the mixed potential . . .

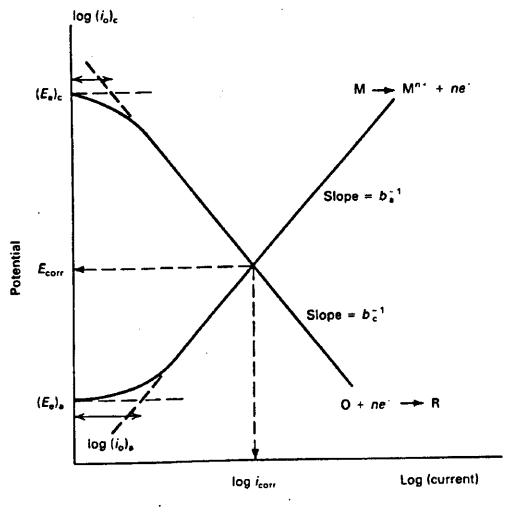
 $(E_e)_a < E_{corr} < (E_e)_c$

Metal dissolution is driven by the ANODIC ACTIVATION OVERPOTENTIAL:

$$\eta_a^A = E_{corr} - (E_e)_a$$

and the cathodic reaction is driven by the CATHODIC ACTIVATION OVERPOTENTIAL:

 $\eta_c^A = (E_e)_a - E_{corr}$


<u>Note</u>: the thermodynamic driving force for corrosion, ΔE_{therm} ...

 $\Delta E_{\text{therm}} = (E_e)_c - (E_e)_a$.

Usually, ΔE_{therm} is large enough to put E_{corr} in the Tafel regions for both reactions (i.e., the reverse reactions are negligible) - unless oxide films interfere.

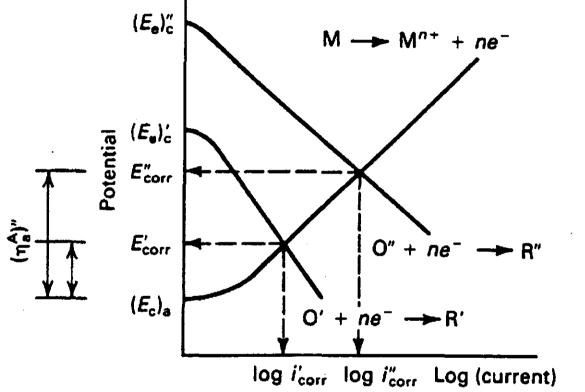
Corrosion for Engineers Dr. Derek H. Lister

The coupled portions of the curves for the anodic and cathodic reactions (i.e., $i_a + ve$, $i_c + re$) are usually plotted as potential vs. logarithm of the current, with the -ve sign of the cathodic current neglected . . .

Both curves appear in the +ve quadrant. This is the "EVANS DIAGRAM".

Evans diagram for the corrosion process $M + O \longrightarrow M^{n+} + R$

The straight-line portions of the curves are the TAFEL REGIONS, with Tafel slopes indicated earlier.

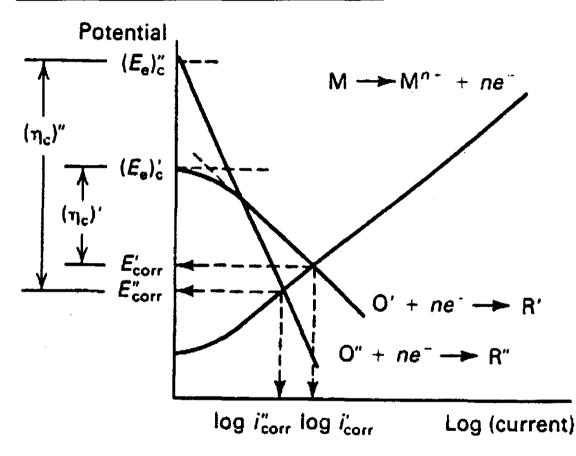

The exchange currents $(i_o)_a$ and $(i_o)_c$, can be obtained by extrapolating the Tafel lines back to the equilibrium potentials $(E_e)_a$ and $(E_e)_c$...

N.B. don't forget that the origin (i=0) cannot be shown on a logarithmic plot.

The intersection of the two curves in the Evans diagram occurs at the corrosion current, i_{corr}.

<u>N.B.</u> the bigger the difference in equilibrium potentials (i.e., the bigger the value of ΔE_{therm}), the bigger the value of i_{corr} (i.e., the greater the corrosion).

Two possible cathodic reactions



NOTE:			
$\Delta E'_{\text{therm}}$	(=	(E _e ') _c	- (E _e) _a)
<∆E" _{therm}	(=	(E _e ") _c	- (E _e) _a)
SO		i ['] corr	< i ["] corr.

<u>Also</u>: anodic activation overpotential for reaction $(E_{corr}^{'} - (E_{e})_{a}) < for reaction"$ $(\eta_{a}^{A})' < (\eta_{a}^{A})"$.

Evans diagram for a metal dissolution coupled separately to two cathodic reactions with distinctly different equilibrium potentials, $(E_e)_c$ " and $(E_e)_c$ '.

<u>Two possible cathodic reactions</u> - different kinetic factors.

Evans diagram for a metal dissolution coupled separately to two cathodic reactions, in which the impact of relative kinetics is greater than the thermodynamic driving force, $\Delta E_{therm.}$

Even though $(E_e)^{"}_c > (E_e)^{'}_c$, activation overpotential $(\eta_a^{A})^{"} < (\eta_a^{A})^{'}$, so that $i^{"}_{corr} < i^{'}_{corr}$...i.e., the corrosion couple with the smaller thermodynamic driving force $(\Delta E^{'}_{therm})$ produces the larger corrosion current "Kinetics are controlling".

Corrosion for Engineers		Chapter 13: CORROSION CURRENT
Dr. Derek H. Lister	·	page 13 - 18

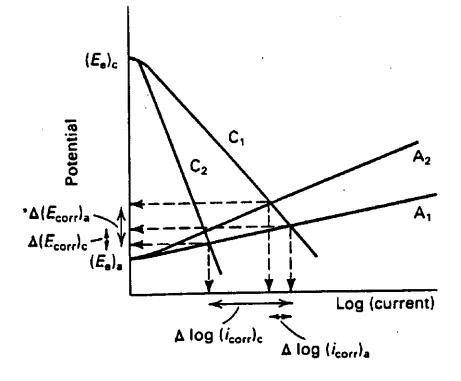
This situation often occurs for a metal corroding in acid, compared with corroding in dissolved oxygen . . . though the thermodynamic driving force is greater in oxygen (remember, Pourbaix Diagram for Ni), acid corrosion is faster.

Arises from kinetic factors . . .

 $(I_o)_{H^{7}H_2} = 10^{-3} - 10^{-2} \text{ A/m}^2$

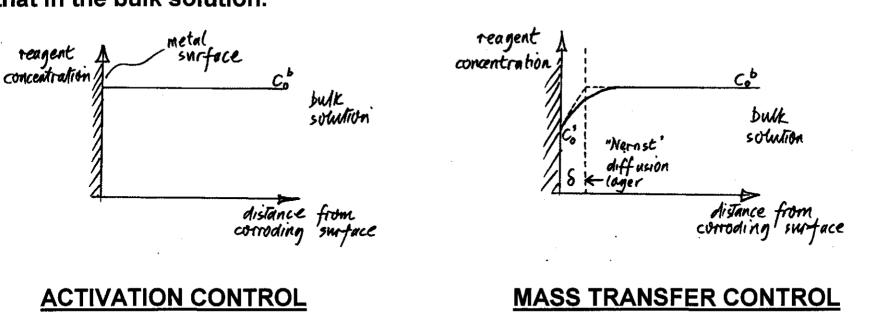
and $(b_c)_{H^*/H_2} \approx 120 \text{ mV/decade} (... depending on metal surface)$

<u>while</u> . . .


 $(I_o)_{O_2/H_2O} \approx 10^{-10} \text{ A/m}^2$ and $(b_c)_{O_2/H_2O} = 120 \text{ mV/decade} (... depending on metal surface).$

Corrosion Rate Controlled by Anodic or Cathodic Reactions

Overall corrosion rate controlled by SLOWEST reaction . . . i.e., reaction with smallest exchange current, i_o, and/or largest Tafel coefficient, b.


(Remember, small i_o means that curve close to vertical axis, large b also means curve close to axis - with steep slope).

Differences in steepness of curves means that activation overpotentials are different . . . and polarizations are different (steep curve \rightarrow strongly polarized).

Evans diagram showing the impact on the corrosion current, i_{corr} , and potential, E_{corr} , of varying the kinetics of a fast metal dissolution (A₁, A₂) or a slow cathodic process (C₁, C₂).

Cathode reaction in diagram strongly polarized . . . controls corrosion . . . small changes in kinetics of cathode have <u>large</u> effect on corrosion rate, small changes in kinetics of anode have <u>small</u> effect on corrosion rate.

rate limiting. Then, the cathodic charge-transfer reaction is fast enough to reduce the concentration of the reagent at the surface corrosion site to a value less than that in the bulk solution.

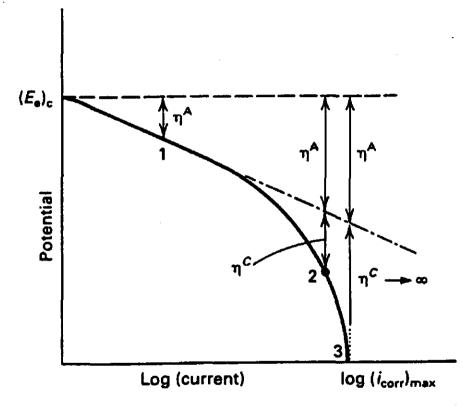
which film formation is involved). If the cathode reagent at the corrosion site (e.g., dissolved O_2 in the O_2 reduction reaction) is in short supply, mass transfer of the reagent can become

<u>Mass Transfer Control</u> (not to be confused with EROSION-CORROSION in which film formation is involved).

From the simple "Nernst Diffusion Layer" model . . . flux of cathodic reagent to surface, J, given by ...

$$J = - \frac{D(C_o^{s} - C_o^{b})}{\delta}$$

so that, at steady state,

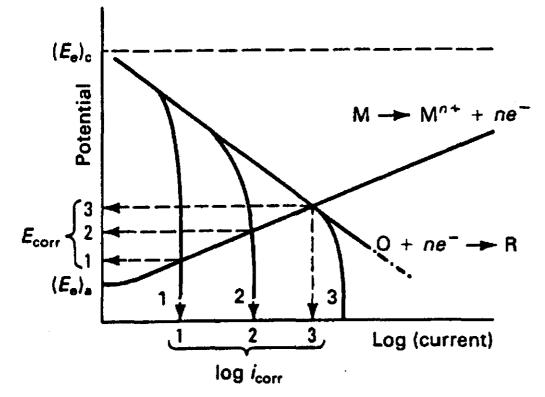

$$\underline{i_c} = -\underline{D(C_o^{s}-C_o^{b})}$$

nF δ

* In the limit, $C_o^s \rightarrow 0$

$$(i_c)_{lim} = \frac{nFDC_o^b}{\delta} = (i_{corr})_{max}$$

When corrosion rate is at this limit, it can only be changed by altering the bulk concentration, C_o^b , and/or the diffusion layer thickness, δ , (by flow, etc.).


Such "CONCENTRATION POLARIZATION" is shown on the Evans diagram (partial):

Polarization curve for the cathodic process showing activation polarization (point 1), joint activation-concentration polarization (point 2), and transport-limited corrosion control (point 3).

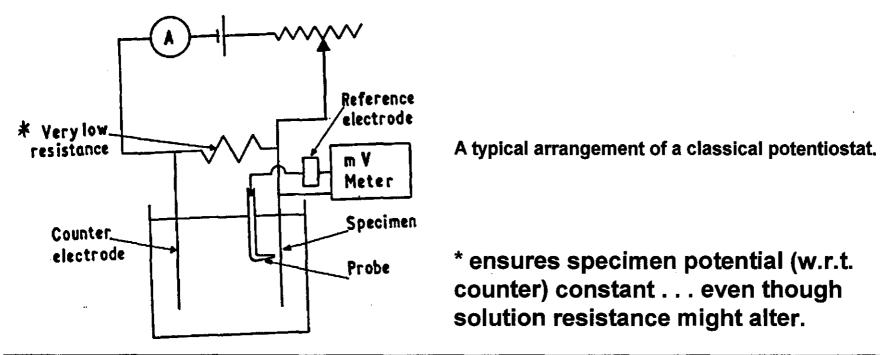
Point 1: Small shift from equilibrium potential . . . no limitation on reagent supply - activation control.

Point 2: Control: activation + concentration . . . overpotential $\eta_{\text{total}} = \eta^{A} + \eta^{C}$ Point 3: Large shift from equilibrium: - reaction rate maximum, η^{c} infinite. Effect of increasing mass transport rate (e.g., by stirring the solution surrounding a corroding surface) . ..

Evans diagram for a corrosion process initially controlled by the transport of cathodic reagent to the corroding surface (line 1). Lines 2 and 3 show the effect of increasing the transport rate of reagent.

Increase in corrosion potential, E_{corr} , caused by decrease in cathodic overpotential as concentration polarization decreased.

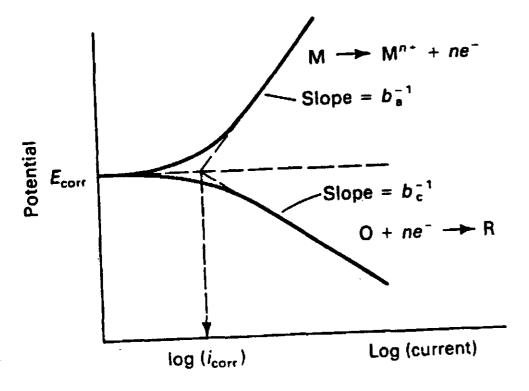
If anodic reaction were mass-transfer controlled (difficulty of metal ions diffusing away), improved stirring would DECREASE E_{corr} .


DISCUSS

Corrosion	for	Engineers
Dr. Derek l	H. L	ister

<u>Electrochemical methods</u> for studying corrosion (e.g., evaluating the performance of a metal specimen in a test solution) often involve the construction of POTENTIAL vs CURRENT curves . . . i.e., they involve the study of polarization characteristics.

Polarization Measurements


The simple potentiostat for applying a fixed potential (relative to a reference electrode) and measuring the current (flowing from the "working" electrode to the "counter" or "auxiliary" electrode):

University of New Brunswick, Canada

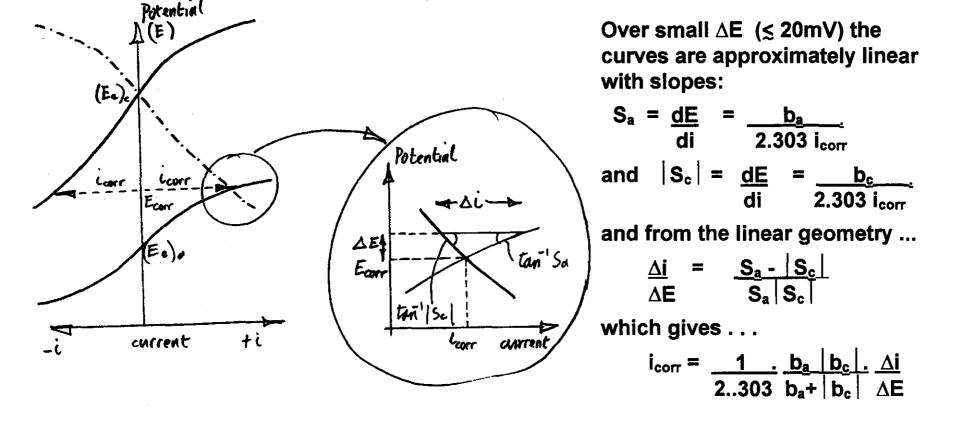
Cor	rosion	for	Engineers
Dr.	Derek i	H. L	ister

Measure potential and current at some distance on either side of E_{corr} and extrapolate E - log i curves (in same quadrant) back to E_{corr} ...

Plot of the total current ($i_T = i_o + i_c$) versus potential showing the extrapolation of the Tafel regions to the corrosion potential, E_{corr} , to yield the corrosion current, i_{corr} . <u>N.B.</u>

If we know . . . (for the anodic or cathodic reaction)

- the exchange current, (i_o)_a, say;


- the equilibrium potential, (E_e)_a;
- the Tafel coefficient, b_a,

then from one measurement (of the corrosion potential, E_{corr}) we can calculate the corrosion rate . . .

 $i_{corr} = i_o \exp\{2.303(\underline{E_{corr} - (\underline{E_e})_a})\}$ b_a

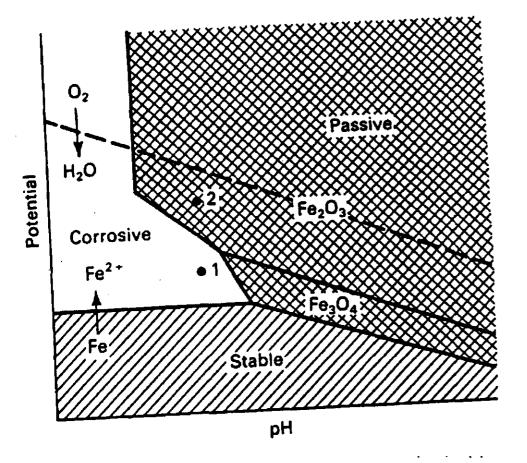
We don't usually know these, though.

be known.

The "polarization resistance", $\Delta i/\Delta E$, is measured: the Tafel coefficients b_a and b_c must

Linear Polarization Method

Valid for corrosion under activation control.

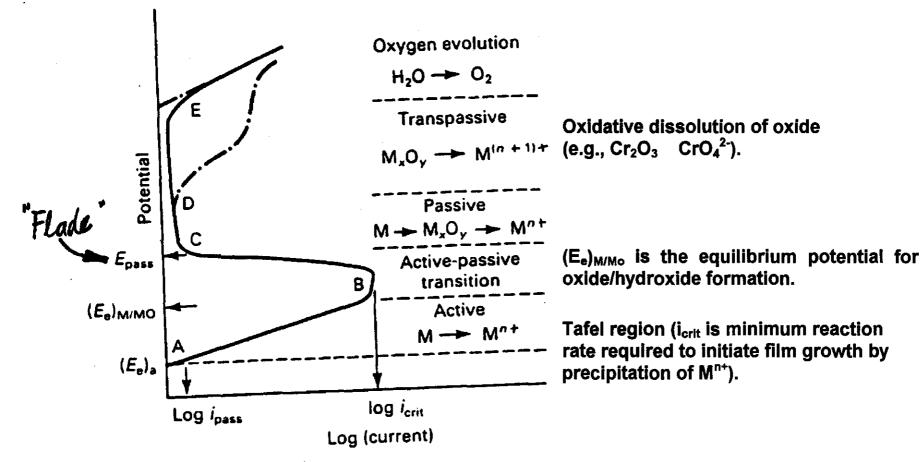

Involves applying small perturbations to the potential around E_{corr} (i.e., $\pm \Delta E \leq 10$ mV).

Dr. Derek H. Lister

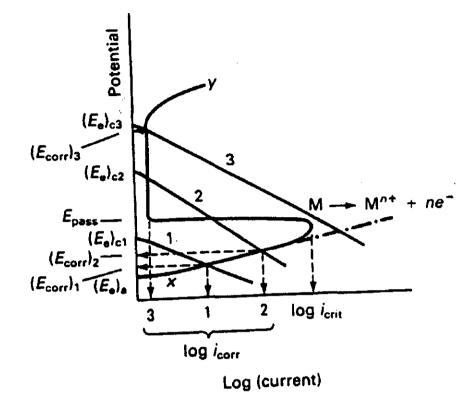
Corrosion for Engineers

Passivation

Under certain conditions of potential and pH, some metals form protective films . . . i.e., they "passivate":



Pourbaix diagram for the iron/water/dissolved oxygen system showing the effect of potential in moving the system from a corrosive (active) region (point 1) to a passive region (point 2).

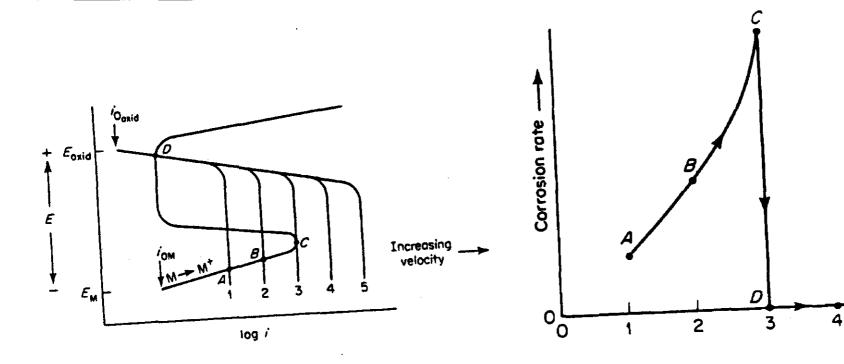

We can examine the KINETICS via an Evans diagram ...

University of New Brunswick, Canada

The polarization curve for the ANODIC reaction of a passivating metal drawn for potentials more noble than the equilibrium potential $(E_e)_a$...

The region attained by the metal in a given environment depends upon the cathodic reaction . . . i.e., where the cathodic curve "cuts" the above anodic curve.

Impact of various cathodic reactions on the corrosion current and potential for a metal capable of undergoing an active-passive transition.


<u>Cathodic Reaction 1</u>: $(E_e)_{c1} < E_{pass}$, so $(E_{corr})_1$ must also $< E_{pass} \dots$ corrodes actively.

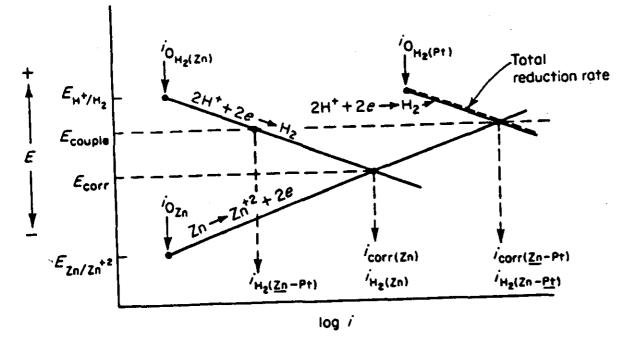
<u>Cathodic Reaction 2</u>: $(E_e)_{c2} > E_{pass}$; HOWEVER, curve intersects Tafel line for anodic reaction BELOW i_{crit} ... passive film cannot form, corrodes actively.

<u>Cathodic Reaction 3</u>: both passivating condition are met $((E_e)_{c3} > E_{pass};$ $i_{initial}$ (intersecting Tafel line) > i_{crit}) ... passivates.

Other Corrosion Examples on Evans Diagrams (from Fontana)

Velocity Effects

Effect of velocity on the electrochemical behaviour of an active-passive metal corroding under diffusion control.


Effect of velocity on the corrosion rate of an active-passive metal corroding under diffusion control.

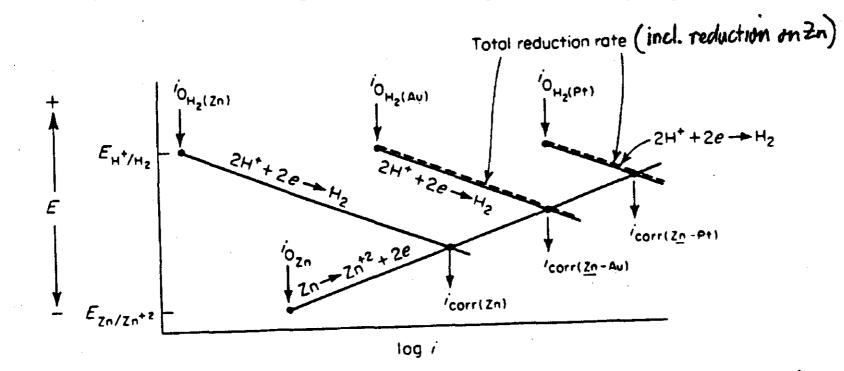
Galvanic Effects

Isolated zinc corrodes in acid . . .

$$Zn \rightarrow Zn^{2+} + 2e$$

2H⁺ + 2e $\rightarrow H_2$

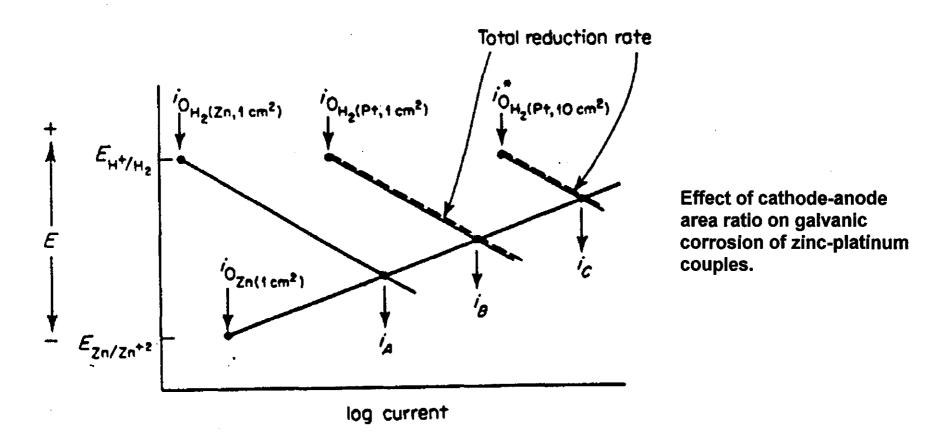
Platinum is inert in acid, BUT, when coupled . . . zinc corrosion increases, H2 evolution occurs on platinum . . .

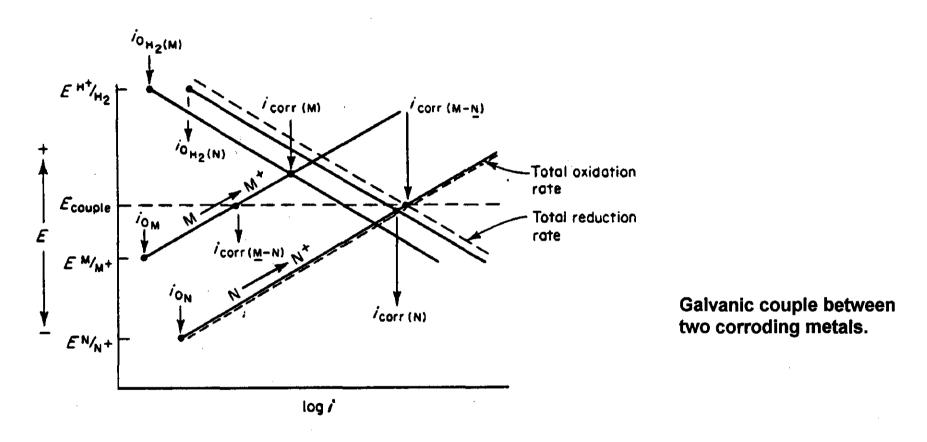


<u>NOTE</u>: the <u>thermodynamic</u> driving force remains the same $(\Delta E_{therm} = (E_e)_{H^*/H_2} - (E_e)_{Zn/Zn^{2^*}})$ but the kinetics change -EXCHANGE CURRENTS on Zn and Pt are different: Potential increases, H₂ evolution on Zn decreases, total reaction increases.

Effect of galvanically coupling zinc to platinum (equal areas).

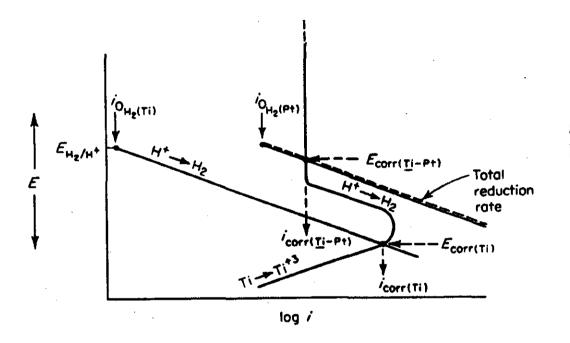
Effect of H⁺/H₂ Exchange Current


The more efficient the hydrogen evolution process (i.e., the higher the exchange current), the larger the effect of galvanic coupling . . .


Comparison of zinc-platinum and zinc-gold galvanic couples (equal areas).

Pt is a very efficient cathode.

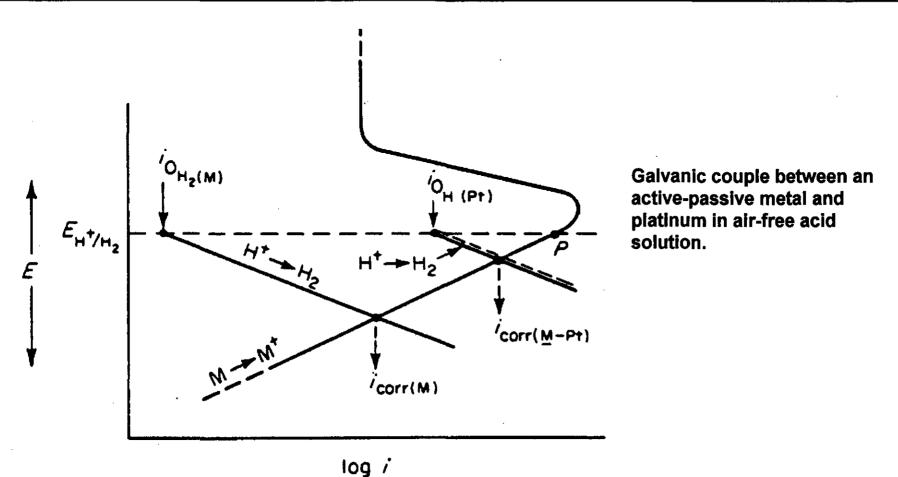
Effect of Cathode Surface Area


Increasing cathode area increases corrosion; (remember, corrosion [mixed] potential determined by point where total oxidation rate equals total reduction rate . . . rates of individual processes determined by mixed potential).

- more active metal corrodes faster when coupled, more noble metal corrodes slower;
- more active metal becomes anode, more noble becomes cathode;
- <u>N.B.</u> actual rates depend on Tafel slopes, exchange currents, etc., . . . without detailed information we only predict trends.

University of New Brunswick, Canada

Effects on Passivating Metals


Spontaneous passivation of titanium by galvanically coupling to platinum.

Only works if passivating potential (i.e., Flade potential) less than E_{H_2/H^*} .

<u>NOTE</u>: Raises the possibility of ANODIC PROTECTION.

University of New Brunswick, Canada

Chapter 13: CORROSION CURRENT page 13 - 37

Passivating potential too noble for couple to passivate metal.

If very large Pt cathode coupled, corrosion can be increased to P.